Advanced search

Report side effect

Report a suspected side effect or falsified product to the MHRA Yellow Card scheme.
Go to {yellow_card_logo} site
{arrow_up} Back to top

Tiogiva 18 microgram, inhalation powder, hard capsule

Active Ingredient:
ATC code: 
R03BB04
{info_black}
About Medicine
{healthcare_pro_orange} This information is for use by healthcare professionals
Last updated on emc: 02 Jun 2021
1. Name of the medicinal product

Tiogiva 18 microgram, inhalation powder, hard capsule

2. Qualitative and quantitative composition

Each capsule contains 21.7 microgram tiotropium bromide, anhydrous (amorphous) equivalent to 18 microgram tiotropium.

The delivered dose (the dose that leaves the mouthpiece) is 12.1 microgram tiotropium bromide, anhydrous (amorphous) equivalent to10 microgram tiotropium.

Excipient with known effect:

Each capsule contains 5.2 milligram of lactose (corresponding to 5.5 milligram monohydrate).

For the full list of excipients, see section 6.1.

3. Pharmaceutical form

Inhalation powder, hard capsule.

Transparent colourless hard capsules containing the inhalation powder with 'T10' printed on the capsule.

4. Clinical particulars
4.1 Therapeutic indications

Tiotropium is indicated as a maintenance bronchodilator treatment to relieve symptoms of patients with chronic obstructive pulmonary disease (COPD).

4.2 Posology and method of administration

Posology

The recommended dosage of tiotropium bromide is inhalation of the contents of one capsule once daily with the dry powder inhaler the same time of day. To get a full daily dose, the patient must breath out completely. The patient should also inhale a second time from the same capsule.

The recommended dose should not be exceeded.

Tiogiva capsules are only for inhalation.

Tiogiva capsules must not be swallowed.

Tiotropium bromide should only be inhaled with the dry powder inhaler.

Special populations

Geriatric patients can use tiotropium bromide at the recommended dose.

Renally impaired patients can use tiotropium bromide at the recommended dose. For patients with moderate to severe impairment (creatinine clearance ≤ 50 ml/min) see section 4.4 and section 5.2.

Hepatically impaired patients can use tiotropium bromide at the recommended dose (see section 5.2).

Paediatric population

COPD

There is no relevant use in the paediatric population (below 18 years) in the indication stated under section 4.1.

Cystic fibrosis

The safety and efficacy of Tiogiva 18 microgram in children and adolescents has not been established. No data are available.

Method of administration/Instructions for handling and use

To ensure proper administration of the medicinal product the patient should be trained how to use the inhaler by the physician or by other healthcare professionals.

The dry powder inhaler is especially designed for Tiogiva capsules; patients must not use it to take any other medication.

The product comes with tiotropium capsules in blister packaging and depending on the pack also contains a “ dry powder inhaler” (MRX003-R). The dry powder inhaler should be used with all accompanying capsules or, when used in combination with supplemental blister packs containing tiotropium capsules only, the dry powder inhaler could be used up to a maximum of 180 days.

The dry powder inhaler should only be used with the blister of capsules provided.

Do not use your dry powder inhaler to take any other medicine.

Do not use the dry powder inhaler for more than 180 days.

Do not use the dry powder inhaler beyond the device expiry date.

Dispose of the dry powder inhaler once all accompanying capsules have been used or, when used in combination with supplemental blister packs containing tiotropium capsules, dispose of the dry powder inhaler after a period of 180 days.

SMPC_39764_image1_1.png

Figure A

The parts of your dry powder inhaler include: (see Figure A)

1. Dust cap (lid)

2. Mouthpiece

3. Mouthpiece ridge

4. Base

5. Centre chamber

6. Piercing Button

7. Air intake vents

Taking your full daily dose of medicine requires 4 main steps:

Step 1: Opening your dry powder inhaler

SMPC_39764_image2_1.png

Figure B

After removing your dry powder inhaler from the pouch:

• Open the dust cap (lid) by lifting the dust cap (lid). (see Figure B)

SMPC_39764_image3_1.png

Figure C

• Pull the dust cap (lid) upwards away from the base to expose the mouthpiece. (see Figure C)

SMPC_39764_image4_1.png

Figure D

• Open the mouthpiece by pulling the mouthpiece ridge up and away from the base so the centre chamber is showing. (see Figure D)

Step 2: Inserting the capsule into your dry powder inhaler

SMPC_39764_image5_1.png

Figure E

Remove a capsule from the blister (only immediately before use (see Blister Handling) and place the capsule in the centre chamber of your dry powder inhaler.

It does not matter which side of the capsule is up or down (See Figure E)

SMPC_39764_image6_1.png

Figure F

Close the mouthpiece firmly against the grey base until you hear a click. (see Figure F)

Leave the dust cap (lid) open.

Step 3: Piercing the capsule:

SMPC_39764_image7_1.png

Figure G

• Hold your dry powder inhaler with the mouthpiece pointed up. (see Figure G)

• Press the piercing button once fully in until it stops, then release. This is how you make holes in the capsule so that you get your medicine when you breathe in.

Do not press the piercing button more than one time.

Do not push upward on the base while pressing the piercing button. This may cause the device to open, such as for cleaning (see Caring for and Storing Your Dry Powder Inhaler).

Keep your inhaler in an upright position.

Do not shake your dry powder inhaler.

• The piercing of the capsule may produce small capsule pieces. Some of these small pieces may pass through the screen of your MRX003-R into your mouth or throat when you breathe in your medicine. It is not harmful if these pieces are swallowed or inhaled.

Step 4: Taking your full daily dose (2 inhalations from the same capsule)

SMPC_39764_image8_1.png

Figure H

Breathe out completely in 1 breath, emptying your lungs of any air. (see Figure H)

Important: Do not breathe into your dry powder inhaler.

SMPC_39764_image9_1.png

Figure I

With your next breath, take your medicine:

Hold your head in an upright position while you are looking straight ahead. (see Figure I)

• Raise your dry powder inhaler to your mouth in a horizontal position. Do not block the air intake vents.

• Close your lips tightly around the mouthpiece.

• Breathe in slowly and deeply until your lungs are full. You should hear and/or feel the capsule vibrate (rattle).

• Hold your breath for a few seconds and, at the same time, take your dry powder inhaler out of your mouth.

• Breath normally again. Resume normal breathing. Repeat step 4 once more, in order to empty the capsule completely.

Important: Do not press the piercing button again.

Remember: To get your full medicine dose each day, you must breathe in 2 times from the same capsule. Make sure you breathe out completely each time before you breathe in from your dry powder inhaler.

Caring for and storing your Dry Powder Inhaler:

SMPC_39764_image10_1.png

Figure J

After taking your daily dose, open the mouthpiece and tip out the used capsule without touching it, into your rubbish bin.

• Remove any capsule pieces or powder build up, without touching it, by turning your dry powder inhaler upside-down and gently, but firmly, tapping it. (see Figure J)

• Close the mouthpiece and dust cap for storage.

Store the dry powder inhaler at ambient temperature (not more than 30° C).

Do not store your dry powder inhaler and tiotropium capsules (blisters) in a damp moist place. Always store tiotropium capsules in the sealed blisters.

Cleaning your dry powder inhaler:

SMPC_39764_image11_1.png

Figure K

Clean the dry powder inhaler monthly. (see Figure K).

Do not use cleaning agents or detergents.

Do not place your dry powder inhaler in the dishwasher for cleaning.

It takes 24 hours to air-dry your dry powder inhaler after you clean it:

Do not use a hair dryer to dry your dry powder inhaler

Do not use your dry powder inhaler when it is wet. If needed, you may clean the outside of the mouthpiece with a clean damp cloth.

Cleaning Steps:

• Open the dust cap and mouthpiece.

• Open the base by pushing the piercing button upwards.

• Look in the centre chamber for capsule pieces or powder build-up. If seen, tap out.

• Rinse your dry powder inhaler with warm water, pressing the button a few times so that the centre chamber and the piercing needle is under the running water. Check that any powder build-up or capsule pieces are removed.

• Dry your dry powder inhaler well by tipping the excess water out on a paper towel. Air-dry afterwards, leaving the dust cap, mouthpiece, and base open by fully spreading it out so that it dries completely. All parts of the dry powder inhaler should be completely dry prior to use.

Blister handling

SMPC_39764_image12_1.png

Figure L

Each day, separate only 1 of the blisters from the blister card by tearing along the perforated line. (see Figure L)

SMPC_39764_image13_1.png

Figure M

Remove the tiotropium capsule from the blister (see Figure M):

• Do not cut the foil or use sharp instruments to take out the capsule from the blister.

• Bend 1 of the blister corners with an arrow and separate the aluminium foil layers.

• Peel back the printed foil until you see the whole capsule. Do this only immediately before use.

• If you have opened more than 1 blister to the air, the extra capsule should not be used and should be thrown away.

SMPC_39764_image14_1.png

Figure N

Each tiotropium capsule contains only a small amount of powder. (see Figure N) This is 1 full dose taken with two successive breaths.

Do not open the capsule or it may not work.

Additional Information

• The dry powder inhaler is intended to be used by adults (minimum 18 years of age) who require pulmonary administration of a medicinal substance.

• There are no known contraindications for the dry powder inhaler.

• There are no special precautions for dry powder inhaler disposal.

Do not use the device if it is visibly damaged or if an old capsule remains in the device.

• Consult a healthcare professional in case of any abnormal reactions to the dry powder inhaler use.

4.3 Contraindications

Hypersensitivity to the active substance or to the excipient listed in section 6.1 or to atropine or its derivatives, e.g. ipratropium or oxitropium.

4.4 Special warnings and precautions for use

Tiotropium bromide, as a once daily maintenance bronchodilator, should not be used for the initial treatment of acute episodes of bronchospasm, i.e. rescue therapy.

Immediate hypersensitivity reactions may occur after administration of tiotropium bromide inhalation powder.

Consistent with its anticholinergic activity, tiotropium bromide should be used with caution in patients with narrow-angle glaucoma, prostatic hyperplasia or bladder-neck obstruction. (See section 4.8).

Inhaled medicines may cause inhalation-induced bronchospasm.

Tiotropium should be used with caution in patients with recent myocardial infarction < 6 months; any unstable or life threatening cardiac arrhythmia or cardiac arrhythmia requiring intervention or a change in drug therapy in the past year; hospitalisation of heart failure (NYHA Class III or IV) within the past year. These patients were excluded from the clinical trials and these conditions may be affected by the anticholinergic mechanism of action.

As plasma concentration increases with decreased renal function in patients with moderate to severe renal impairment (creatinine clearance ≤ 50 ml/min) tiotropium bromide should be used only if the expected benefit outweighs the potential risk. There is no long term experience in patients with severe renal impairment (see section 5.2).

Patients should be cautioned to avoid getting the drug powder into their eyes. They should be advised that this may result in precipitation or worsening of narrow-angle glaucoma, eye pain or discomfort, temporary blurring of vision, visual halos or coloured images in association with red eyes from conjunctival congestion and corneal oedema. Should any combination of these eye symptoms develop, patients should stop using tiotropium bromide and consult a specialist immediately.

Dry mouth, which has been observed with anti-cholinergic treatment, may in the long term be associated with dental caries.

Tiotropium bromide should not be used more frequently than once daily (see section 4.9).

Tiogiva capsules contain 5.2 mg lactose (corresponding to 5.5 mg lactose monohydrate). Patients with rare hereditary problems of galactose intolerance, total lactase deficiency or glucose-galactose malabsorption should not take this medicine. The excipient lactose monohydrate may contain small amounts of milk proteins which may cause allergic reactions.

4.5 Interaction with other medicinal products and other forms of interaction

Although no formal drug interaction studies have been performed, tiotropium bromide inhalation powder has been used concomitantly with other drugs without clinical evidence of drug interactions. These include sympathomimetic bronchodilators, methylxanthines, oral and inhaled steroids, commonly used in the treatment of COPD.

Use of LABA or ICS was not found to alter the exposure to tiotropium.

The co-administration of tiotropium bromide with other anticholinergic-containing drugs has not been studied and is therefore not recommended.

4.6 Fertility, pregnancy and lactation

Pregnancy

There is a very limited amount of data from the use of tiotropium in pregnant women. Animal studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity at clinically relevant doses (see section 5.3). As a precautionary measure, it is preferable to avoid the use of Tiogiva during pregnancy.

Breastfeeding

It is unknown whether tiotropium bromide is excreted in human breast milk. Despite studies in rodents which have demonstrated that excretion of tiotropium bromide in breast milk occurs only in small amounts, use of Tiotropium is not recommended during breast-feeding. Tiotropium bromide is a long-acting compound. A decision on must be made whether to continue/discontinue breast-feeding or to continue/discontinue/abstain from therapy with Tiogiva therapy should be made taking into account the benefit of breast-feeding to for the child and the benefit of Tiogiva therapy to for the woman.

Fertility

Clinical data on fertility are not available for tiotropium. A non-clinical study performed with tiotropium showed no indication of any adverse effect on fertility (see section 5.3).

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. The occurrence of dizziness, blurred vision, or headache may influence the ability to drive and use machinery.

4.8 Undesirable effects

Summary of the safety profile

Many of the listed undesirable effects can be assigned to the anticholinergic properties of Tiotropium.

Tabulated summary of adverse reactions

The frequencies assigned to the undesirable effects listed below are based on crude incidence rates of adverse drug reactions (i.e. events attributed to tiotropium) observed in the tiotropium group (9,647 patients) from 28 pooled placebo-controlled clinical trials with treatment periods ranging from four weeks to four years.

Frequency is defined using the following convention:

Very common (≥ 1/10); common (≥ 1/100 to <1/10); uncommon (≥ 1/1,000 to <1/100); rare (≥ 1/10,000 to <1/1,000); very rare (<1/10,000), not known (cannot be estimated from the available data).

System Organ Class/MedDRA Preferred Term

Frequency

Metabolism and nutrition disorders

Dehydration

 

Not known

Nervous system disorders

Dizziness

Headache

Taste disorders

Insomnia

 

Uncommon

Uncommon

Uncommon

Rare

Eye disorders

Vision blurred

Glaucoma

Intraocular pressure increased

 

Uncommon

Rare

Rare

Cardiac disorders

Atrial fibrillation

Supraventricular tachycardia

Tachycardia

Palpitations

 

Uncommon

Rare

Rare

Rare

Respiratory, thoracic and mediastinal disorders

Pharyngitis

Dysphonia

Cough

Bronchospasm

Epistaxis

Laryngitis

Sinusitis

 

Uncommon

Uncommon

Uncommon

Rare

Rare

Rare

Rare

Gastrointestinal disorders

Dry mouth

Gastro-oesophageal reflux disease

Constipation

Oropharyngeal candidiasis

Intestinal obstruction, including ileus paralytic

Gingivitis

Glossitis

Dysphagia

Stomatitis

Nausea

Dental caries

 

Common

Uncommon

Uncommon

Uncommon

Rare

Rare

Rare

Rare

Rare

Rare

Not known

Skin and subcutaneous tissue disorders, immune system disorders

Rash

Urticaria

Pruritus

Hypersensitivity (including immediate reactions)

Angioedema

Anaphylactic reaction

Skin infection, skin ulcer

Dry skin

 

Uncommon

Rare

Rare

Rare

Rare

Not known

Not known

Not known

Musculoskeletal and connective tissue disorders

Joint swelling

 

Not known

Renal and urinary disorders

Dysuria

Urinary retention

Urinary tract infection

 

Uncommon

Uncommon

Rare

Description of selected adverse reactions

In controlled clinical studies, the commonly observed undesirable effects were anticholinergic undesirable effects such as dry mouth which occurred in approximately 4% of patients.

In 28 clinical trials, dry mouth led to discontinuation in 18 of 9,647 tiotropium treated patients (0.2%).

Serious undesirable effects consistent with anticholinergic effects include glaucoma, constipation and intestinal obstruction including ileus paralytic as well as urinary retention.

Other special population

An increase in anticholinergic effects may occur with increasing age.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at www.mhra.gov.co.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.

4.9 Overdose

High doses of tiotropium bromide may lead to anticholinergic signs and symptoms.

However, there were no systemic anticholinergic adverse effects following a single inhaled dose of up to 340 microgram tiotropium bromide in healthy volunteers. Additionally, no relevant adverse effects, beyond dry mouth, were observed following 7 day dosing of up to 170 microgram tiotropium bromide in healthy volunteers. In a multiple dose study in COPD patients with a maximum daily dose of 43 microgram tiotropium bromide over four weeks no significant undesirable effects have been observed.

Acute intoxication by inadvertent oral ingestion of tiotropium bromide capsules is unlikely due to low oral bioavailability.

5. Pharmacological properties
5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Other drugs for obstructive airway diseases, inhalants, anticholinergics

ATC code: R03B B04

Mechanism of action

Tiotropium bromide is a long-acting, specific, muscarinic receptor antagonist, in clinical medicine often called an anticholinergic. By binding to the muscarinic receptors in the bronchial smooth musculature, tiotropium bromide inhibits the cholinergic (bronchoconstrictive) effects of acetylcholine, released from parasympathetic nerve endings. It has similar affinity to the subtypes of muscarinic receptors, M1 to M5. In the airways, tiotropium bromide competitively and reversibly antagonises the M3 receptors, resulting in relaxation. The effect was dose dependent and lasted longer than 24h. The long duration is probably due to the very slow dissociation from the M3 receptor, exhibiting a significantly longer dissociation half-life than ipratropium. As an N-quaternary anticholinergic, tiotropium bromide is topically (broncho-) selective when administered by inhalation, demonstrating an acceptable therapeutic range before systemic anticholinergic effects may occur.

Pharmacodynamic effects

The bronchodilation is primarily a local effect (on the airways), not a systemic one. Dissociation from M2-receptors is faster than from M3, which in functional in vitro studies, elicited (kinetically controlled) receptor subtype selectivity of M3 over M2. The high potency and slow receptor dissociation found its clinical correlate in significant and long-acting bronchodilation in patients with COPD.

Cardiac electrophysiology

Electrophysiology: In a dedicated QT study involving 53 healthy volunteers, tiotropium 18 microgram and 54 microgram (i.e. three times the therapeutic dose) over 12 days did not significantly prolong QT intervals of the ECG.

Clinical efficacy and safety

The clinical development programme included four one-year and two six-month randomised, double-blind studies in 2663 patients (1308 receiving tiotropium bromide). The one-year programme consisted of two placebo-controlled trials and two trials with an active control (ipratropium). The two six-month trials were both, salmeterol and placebo controlled. These studies included lung function and health outcome measures of dyspnoea, exacerbations and health-related quality of life.

Lung function

Tiotropium bromide, administered once daily, provided significant improvement in lung function (forced expiratory volume in one second, FEV1 and forced vital capacity, FVC) within 30 minutes following the first dose which was maintained for 24 hours. Pharmacodynamic steady state was reached within one week with the majority of bronchodilation observed by the third day. Tiotropium bromide significantly improved morning and evening PEFR (peak expiratory flow rate) as measured by patient's daily recordings. The bronchodilator effects of tiotropium bromide were maintained throughout the one year period of administration with no evidence of tolerance.

A randomised, placebo-controlled clinical study in 105 COPD patients demonstrated that bronchodilation was maintained throughout the 24 hour dosing interval in comparison to placebo regardless of whether the drug was administered in the morning or in the evening.

Clinical trials (up to 12 months)

Dyspnoea, Exercise tolerance

Tiotropium bromide significantly improved dyspnoea (as evaluated using the Transition Dyspnoea Index). This improvement was maintained throughout the treatment period.

The impact of improvements in dyspnoea on exercise tolerance was investigated in two randomised, double-blind, placebo-controlled trials in 433 patients with moderate to severe COPD. In these trials, six weeks of treatment with tiotropium bromide significantly improved symptom-limited exercise endurance time during cycle ergometry at 75% of maximal work capacity by 19.7% (Trial A) and 28.3% (Trial B) compared with placebo.

Health-related Quality of Life

In a 9-month, randomised, double-blind, placebo-controlled clinical trial of 492 patients, tiotropium bromide improved health-related quality of life as determined by the St. George's Respiratory Questionnaire (SGRQ) total score. The proportion of patients treated with tiotropium which achieved a meaningful improvement in the SGRQ total score (i.e. > 4 units) was 10.9% higher compared with placebo (59.1% in the tiotropium bromide groups vs. 48.2% in the placebo group (p=0.029)). The mean difference between the groups was 4.19 units (p=0.001; confidence interval: 1.69 – 6.68). The improvements of the subdomains of the SGRQ-score were 8.19 units for “ symptoms” , 3.91 units for “ activity” and 3.61 units for “ impact on daily life” . The improvements of all of these separate subdomains were statistically significant.

COPD Exacerbations

In a randomised, double-blind, placebo controlled trial of 1,829 patients with moderate to very severe COPD, tiotropium bromide statistically significantly reduced the proportion of patients who experienced exacerbations of COPD (32.2% to 27.8%) and statistically significantly reduced the number of exacerbations by 19% (1.05 to 0.85 events per patient year of exposure). In addition, 7.0% of patients in the tiotropium bromide group and 9.5% of patients in the placebo group were hospitalised due to a COPD exacerbation (p=0.056). The number of hospitalisations due to COPD was reduced by 30% (0.25 to 0.18 events per patient year of exposure).

A one-year randomised, double-blind, double-dummy, parallel-group trial compared the effect of treatment with 18 microgram tiotropium once daily with that of 50 microgram salmeterol HFA pMDI twice daily on the incidence of moderate and severe exacerbations in 7,376 patients with COPD and a history of exacerbations in the preceding year.

Table 1: Summary of exacerbation endpoints

Endpoint

Tiotropium 18 microgram inhalation powder

N = 3707

Salmeterol 50 microgram HFA pMDI

N = 3669

Ratio

(95% CI)

p-value

Time [days] to first exacerbation1

187

145

0.83

(0.77-0.90)

<0.001

Time to first severe (hospitalised) exacerbation2

-

-

0.72

(0.61-0.85)

<0.001

Patients with ≥ 1 exacerbation, n (%)3

1277 (34.4)

1414 (38.5)

0.90

(0.85-0.95)

<0.001

Patients with ≥ 1 severe (hospitalised) exacerbation, n (%)3

262 (7.1)

336 (9.2)

0.77

(0.66-0.89)

<0.001

1 Time [days] refers to 1st quartile of patients. Time to event analysis was done using Cox's proportional hazards regression model with (pooled) centre and treatment as covariate; ratio refers to hazard ratio.

2 Time to event analysis was done using Cox's proportional hazards regression model with (pooled) centre and treatment as covariate; ratio refers to hazard ratio. Time [days] for the 1st quartile of patients cannot be calculated, because proportion of patients with severe exacerbation is too low.

3 Number of patients with event were analysed using Cochran-Mantel-Haenszel test stratified by pooled centre; ratio refers to risk ratio.

Compared with salmeterol, tiotropium bromide increased the time to the first exacerbation (187 days vs. 145 days), with a 17% reduction in risk (hazard ratio, 0.83; 95% confidence interval [CI], 0.77 to 0.90; P<0.001). Tiotropium bromide also increased the time to the first severe (hospitalised) exacerbation (hazard ratio, 0.72; 95% CI, 0.61 to 0.85; P<0.001).

Long-term clinical trials (more than 1 year, up to 4 years)

In a 4-year, randomised, double-blind, placebo-controlled clinical trial of 5,993 randomised patients (3,006 receiving placebo and 2,987 receiving tiotropium bromide), the improvement in FEV1 resulting from tiotropium bromide, compared with placebo, remained constant throughout 4 years. A higher proportion of patients completed ≥ 45 months of treatment in the tiotropium bromide group compared with the placebo group (63.8% vs. 55.4%, p<0.001). The annualized rate of decline of FEV1 compared to placebo was similar between tiotropium bromide and placebo. During treatment, there was a 16% reduction in the risk of death. The incidence rate of death was 4.79 per 100 patient years in the placebo group vs. 4.10 per 100 patient years in the tiotropium group (hazard ratio (tiotropium/placebo) = 0.84, 95% CI = 0.73, 0.97). Treatment with tiotropium reduced the risk of respiratory failure (as recorded through adverse event reporting) by 19% (2.09 vs. 1.68 cases per 100 patient years, relative risk (tiotropium/placebo) = 0.81, 95% CI = 0.65, 0.999).

Tiotropium active-controlled study

A long-term, large scale randomised, double-blind, active-controlled study with an observation period up to 3 years has been performed to compare the efficacy and safety of tiotropium bromide inhalation powder and tiotropium bromide soft mist inhaler (5,694 patients receiving tiotropium bromide inhalation powder; 5,711 patients receiving tiotropium bromide soft mist inhaler). The primary endpoints were time to first COPD exacerbation, time to all-cause mortality and in a sub-study (906 patients) trough FEV1 (pre-dose).

The time to first COPD exacerbation was numerically similar during the study with tiotropium bromide inhalation powder and tiotropium bromide soft mist inhaler (hazard ratio (tiotropium bromide inhalation powder/ tiotropium bromide soft mist inhaler) 1.02 with a 95% CI of 0.97 to 1.08). The median number of days to the first COPD exacerbation was 719 days for tiotropium bromide inhalation powder and 756 days for tiotropium bromide soft mist inhaler.

The bronchodilator effect of tiotropium bromide inhalation powder was sustained over 120 weeks, and was similar to tiotropium bromide soft mist inhaler. The mean difference in trough FEV1 for tiotropium bromide inhalation powder versus tiotropium bromide soft mist inhaler was 0.010 L (95% CI -0.018 to 0.038 L).

In the post-marketing study comparing tiotropium bromide soft mist inhaler and tiotropium bromide inhalation powder, all-cause mortality including vital status follow up was similar during the study with tiotropium bromide inhalation powder and tiotropium bromide soft mist inhaler (hazard ratio (tiotropium bromide inhalation powder/tiotropium bromide soft mist inhaler) 1.04 with a 95% CI of 0.91 to 1.19).

Paediatric population

The European Medicines Agency has waived the obligation to submit results of studies with tiotropium bromide in all subsets of the paediatric population in COPD and cystic fibrosis (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

General Introduction

Tiotropium bromide is a non-chiral quaternary ammonium compound and is sparingly soluble in water. Tiotropium bromide is administered by dry powder inhalation. Generally, with the inhaled route of administration, the majority of the delivered dose is deposited in the gastro-intestinal tract, and to a lesser extent in the intended organ of the lung. Many of the pharmacokinetic data described below were obtained with higher doses than recommended for therapy.

General Characteristics of the Active Substance after Administration of the Medicinal Product

Absorption

Following dry powder inhalation by young healthy volunteers, the absolute bioavailability of 19.5% suggests that the fraction reaching the lung is highly bioavailable. Oral solutions of tiotropium have an absolute bioavailability of 2-3%. Maximum tiotropium plasma concentrations were observed 5-7 minutes after inhalation.

At steady state, peak tiotropium plasma levels in COPD patients were 12.9 pg/ml and decreased rapidly in a multicompartmental manner. Steady state trough plasma concentrations were 1.71 pg/ml. Systemic exposure following the inhalation of tiotropium bromide inhalation powder was similar to tiotropium inhaled via the soft mist inhaler.

Distribution

Tiotropium has a plasma protein binding of 72% and shows a volume of distribution of 32 L/kg. Local concentrations in the lung are not known, but the mode of administration suggests substantially higher concentrations in the lung. Studies in rats have shown that tiotropium bromide does not penetrate the blood-brain barrier to any relevant extent.

Biotransformation

The extent of biotransformation is small. This is evident from a urinary excretion of 74% of unchanged substance after an intravenous dose to young healthy volunteers. The ester tiotropium bromide is nonenzymatically cleaved to the alcohol (N-methylscopine) and acid compound (dithienylglycolic acid) that are inactive on muscarinic receptors. In-vitro experiments with human liver microsomes and human hepatocytes suggest that some further drug (<20% of dose after intravenous administration) is metabolised by cytochrome P450 (CYP) dependent oxidation and subsequent glutathion conjugation to a variety of Phase II-metabolites.

In vitro studies in liver microsomes reveal that the enzymatic pathway can be inhibited by the CYP 2D6 (and 3A4) inhibitors, quinidine, ketoconazole and gestodene. Thus CYP 2D6 and 3A4 are involved in metabolic pathway that is responsible for the elimination of a smaller part of the dose. Tiotropium bromide even in supra-therapeutic concentrations does not inhibit CYP 1A1, 1A2, 2B6, 2C9, 2C19, 2D6, 2E1 or 3A in human liver microsomes.

Elimination

The effective half-life of tiotropium ranges between 27-45h in COPD patients. Total clearance was 880 ml/min after an intravenous dose in young healthy volunteers. Intravenously administered tiotropium is mainly excreted unchanged in urine (74%). After dry powder inhalation by COPD patients in steady-state, urinary excretion is 7% (1.3 micrograms) of the unchanged drug over 24 hours, the remainder being mainly non-absorbed drug in gut that is eliminated via the faeces. The renal clearance of tiotropium exceeds the creatinine clearance, indicating secretion into the urine. After chronic once daily inhalation by COPD patients, pharmacokinetic steady state was reached by day 7 with no accumulation thereafter.

Linearity/non-linearity

Tiotropium demonstrates linear pharmacokinetics in the therapeutic range independent of the formulation.

Special patient populations

Geriatric Patients: As expected for all predominantly renally excreted drugs, advancing age was associated with a decrease of tiotropium renal clearance (365 mL/min in COPD patients < 65 years to 271 mL/min in COPD patients ≥ 65 years) This did not result in a corresponding increase in AUC0-6,ss or Cmax,ss values.

Renally Impaired Patients: Following once daily inhaled administrations of tiotropium to steady-state in COPD patients, mild renal impairment (CLCR 50-80 ml/min) resulted in slightly higher AUC0-6,ss (between 1.8-30% higher) and similar Cmax, ss values compared to patients with normal renal function(CLCR >80 ml/min).

In COPD patients with moderate to severe renal impairment (CLCR <50 ml/min), the intravenous administration of tiotropium resulted in doubling of the total exposure (82% higher AUC0-4h) and 52% higher Cmax) compared to COPD patients with normal renal function, which was confirmed by plasma concentrations after dry powder inhalation.

Hepatically Impaired Patients: Liver insufficiency is not expected to have any relevant influence on tiotropium pharmacokinetics. Tiotropium is predominantly cleared by renal elimination (74% in young healthy volunteers) and simple non-enzymatic ester cleavage to pharmacologically inactive products.

Japanese COPD Patients: In cross trial comparison, mean peak tiotropium plasma concentrations 10 minutes postdosing at steady-state were 20% to 70% higher in Japanese compared to Caucasian COPD patients following inhalation of tiotropium but there was no signal for higher mortality or cardiac risk in Japanese patients compared to Caucasian patients. Insufficient pharmacokinetic data is available for other ethnicities or races.

Paediatric Patients: See section 4.2

Pharmacokinetic / Pharmacodynamic Relationship(s)

There is no direct relationship between pharmacokinetics and pharmacodynamics.

5.3 Preclinical safety data

Many effects observed in conventional studies of safety pharmacology, repeated dose toxicity, and reproductive toxicity could be explained by the anticholinergic properties of tiotropium bromide. Typically in animals reduced food consumption, inhibited body weight gain, dry mouth and nose, reduced lacrimation and salivation, mydriasis and increased heart rate were observed. Other relevant effects noted in repeated dose toxicity studies were: mild irritancy of the respiratory tract in rats and mice evinced by rhinitis and epithelial changes of the nasal cavity and larynx, and prostatitis along with proteinaceous deposits and lithiasis in the bladder in rats.

Harmful effects with respect to pregnancy, embryonal/foetal development, parturition or postnatal development could only be demonstrated at maternally toxic dose levels. Tiotropium bromide was not teratogenic in rats or rabbits. In a general reproduction and fertility study in rats, there was no indication of any adverse effect on fertility or mating performance of either treated parents or their offspring at any dosage.

The respiratory (irritation) and urogenital (prostatitis) changes and reproductive toxicity were observed at local or systemic exposures more than five-fold the therapeutic exposure. Studies on genotoxicity and carcinogenic potential revealed no special hazard for humans.

6. Pharmaceutical particulars
6.1 List of excipients

Lactose monohydrate (which may contain small amounts of milk proteins).

Capsule composed of hydroxypropylmethylcellulose (HPMC), commonly known as Hypromellose.

Capsule printing ink: Shellac, black iron oxide, propylene glycol, strong ammonia solution, potassium hydroxide

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

24 months

Use the capsule directly after opening of the blister pocket.

6.4 Special precautions for storage

Do not store above 30° C

6.5 Nature and contents of container

Alu/Alu peel-off blister containing 10 capsules. The blisters are supplied in a cardboard box, depending on the pack the box will also contain a dry powder inhaler.

The dry powder inhaler is a single dose inhalation device made from acrylonitrile butadiene styrene (ABS) plastic materials and stainless steel.

Package sizes:

• Cardboard box containing 30 capsules (3 blisters) with a dry powder inhaler

• Cardboard box containing 60 capsules (6 blisters) with a dry powder inhaler

• Cardboard box containing 90 capsules (9 blisters) with a dry powder inhaler

• Cardboard box containing 30 capsules (3 blisters)

• Cardboard box containing 60 capsules (6 blisters)

• Cardboard box containing 90 capsules (9 blisters)

Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. Marketing authorisation holder

Glenmark Pharmaceuticals Europe Limited

Laxmi House, 2B Draycott Avenue

Kenton, Middlesex, HA3 0BU

United Kingdom

8. Marketing authorisation number(s)

PL 25258/0370

9. Date of first authorisation/renewal of the authorisation

07/04/2021

10. Date of revision of the text

17/05/2021

Glenmark Pharmaceuticals Europe Ltd
Company image
Address
Building 2, Croxley Park, Watford, WD18 8YA
Telephone
+44 (0)1923 202 950
Fax
+44 (0)1923 251137
Medical Information Direct Line
0800 458 0383
Stock Availability
+44 (0)1923 202 950