Advanced search

Report side effect

Report a suspected side effect or falsified product to the MHRA Yellow Card scheme.
Go to {yellow_card_logo} site
{arrow_up} Back to top

Metformin 500 mg Tablets

Active Ingredient:
Company:  
Medley Pharma Limited See contact details
ATC code: 
A10BA02
{info_black}
About Medicine
{healthcare_pro_orange} This information is for use by healthcare professionals
Last updated on emc: 30 May 2024
1. Name of the medicinal product

Metformin 500 mg Tablets

Axpinet 500 mg Tablets

2. Qualitative and quantitative composition

One film-coated tablet contains metformin hydrochloride 500 mg

For the full list of excipients, see section 6.1

3. Pharmaceutical form

Film-coated tablets

White coloured, film-coated, round, biconvex tablets

OR

White coloured, film-coated, round, biconvex tablets embossed 'M500' on one side and plain on the other side.

4. Clinical particulars
4.1 Therapeutic indications

Non-insulin-dependent diabetes (NIDDM, type II) and, in particular, in obese patients, when adequate dietary treatment and exercise alone does not result in adequate glycaemic control.

• In adults, Metformin 500 mg Tablets may be used as monotherapy or in combination with other oral anti-diabetic agents or with insulin.

• In children from 10 years of age and adolescents, Metformin 500 mg Tablets may be used as monotherapy or in combination with insulin.

A reduction of diabetic complications has been shown in overweight type 2 diabetic adult patients treated with metformin as first-line therapy after diet failure (see section 5.1)

4.2 Posology and method of administration

Posology

Adults with impaired renal function (GFR < 90 mL/min)

Monotherapy and combination with other oral antidiabetic agents

The usual starting dose is 500 mg or 850 mg metformin hydrochloride 2 or 3 times daily given during or after meals.

After 10 to 15 days the dose should be adjusted on the basis of blood glucose measurements.

A slow increase of dose may improve gastrointestinal tolerability.

The maximum recommended dose of metformin hydrochloride is 3 g daily, taken as 3 divided doses.

If transfer from another oral antidiabetic agent is intended: discontinue the other agent and initiate metformin at the dose indicated above.

Combination with insulin

Metformin and insulin may be used in combination therapy to achieve better blood glucose control. Metformin hydrochloride is given at the usual starting dose of 500 mg or 850 mg 2 or 3 times daily, while insulin dosage is adjusted on the basis of blood glucose measurements.

Combination with sulphonylureas:

Metformin 500 mg Tablets may be used in combination with sulphonylureas if monotherapy with metformin hydrochloride does not lead to a satisfactory response. However, it should be noted that metformin hydrochloride and sulphonylureas have a different mode of action and therefore an additive or potentiating effect of these drugs might cause a hypoglycaemic shock.

Substitution for sulphonylureas:

Metformin 500 mg Tablets may be used instead of sulphonylureas in patients who formerly have been treated with sulphonylureas

Elderly

Due to the potential for decreased renal function in elderly subjects, the metformin dosage should be adjusted based on renal function. Regular assessment of renal function is necessary (see section 4.4).

Renal impairment

A GFR should be assessed before initiation of treatment with metformin containing products and at least annually thereafter. In patients at an increased risk of further progression of renal impairment and in the elderly, renal functions should be assessed more frequently, e.g. every 3-6 months.

GFR (mL/min)

Total maximum daily dose (to be divided into 2-3 daily doses)

Additional considerations

60-89

3000 mg

Dose reduction may be considered in relation to declining renal function

45-59

2000 mg

Factors that may increase the risk of lactic acidosis (see section 4.4) should be reviewed before considering initiation of metformin. The starting dose is at most half of the maximum dose.

30-44

1000 mg

<30

-

Metformin is contraindicated

Paediatric population

Monotherapy and combination with insulin

• Metformin can be used in children from 10 years of age and adolescents.

• The usual starting dose is 500 mg or 850 mg metformin hydrochloride once daily, giving during or after meals.

After 10 to 15 days the dose should be adjusted on the basis of blood glucose measurements.

A slow increase of dose may improve gastrointestinal tolerability. The maximum recommended dose of metformin hydrochloride is 2 g daily, taken as 2 or 3 divided doses.

Further dosage information

Method of administration

Metformin 500 mg Tablets should be taken whole with a glass of water during or after meals. They should not be chewed.

Monitoring advice

See special warnings and special precautions for use.

4.3 Contraindications

- Hypersensitivity to metformin hydrochloride or to any of the excipients listed in section 6.1

- Any type of acute metabolic acidosis (such as lactic acidosis, diabetic ketoacidosis)

- Severe renal failure (GFR <30 mL/min)

- Diabetic pre-coma

- Acute conditions with the potential to alter renal function such as: dehydration, severe infection, shock.

- Disease which may cause tissue hypoxia (especially acute disease or worsening of chronic disease) such as: decompensated heart failure, respiratory failure, recent myocardial infarction, shock.

- Hepatic insufficiency, acute alcohol intoxication, alcoholism.

4.4 Special warnings and precautions for use

Lactic acidosis

Lactic acidosis, a very rare, but serious metabolic complication, most often occurs at acute worsening of renal function or cardiorespiratory illness or sepsis. Metformin accumulation occurs at acute worsening of renal function and increases the risk of lactic acidosis.

In case of dehydration (severe diarrhoea or vomiting, fever or reduced fluid intake) metformin should be temporarily discontinued and contact with a health care professional is recommended.

Medicinal products that can acutely impair renal function (such as antihypertensives, diuretics and NSAIDs) should be initiated with caution in metformin-treated patients. Other risk factors for lactic acidosis are excessive alcohol intake, hepatic insufficiency, inadequately controlled diabetes, ketosis, prolonged fasting and any condition associated with hypoxia, as well as concomitant use of medicinal products that may cause lactic acidosis (see sections 4.3 and 4.5).

Patients and/or care-givers should be informed of the risk of lactic acidosis. Lactic acidosis is characterised by acidotic dyspnoea, abdominal pain, muscle cramps, asthenia and hypothermia followed by coma. In case of suspected symptoms, the patient should stop taking metformin and seek immediate medical attention. Diagnostic laboratory findings are decreased blood pH (< 7.35), increased plasma lactate levels (>5 mmol/L), and an increased anion gap and lactate/pyruvate ratio.

Renal function

GFR should be assessed before treatment initiation and regularly thereafter, see section 4.2. Metformin is contraindicated in patients with GFR<30 mL/min and should be temporarily discontinued in the presence of conditions that alter renal function, see section 4.3.

Cardiac function

Patients with heart failure are more at risk of hypoxia and renal insufficiency. In patients with stable chronic heart failure, metformin may be used with a regular monitoring of cardiac and renal function.

For patients with acute and unstable heart failure, metformin is contraindicated (see section 4.3).

Administration of iodinated contrast media

Intravascular administration of iodinated contrast agents may lead to contrast induced nephropathy, resulting in metformin accumulation and an increased risk of lactic acidosis. Metformin should be discontinued prior to or at the time of the imaging procedure and not restarted until at least 48 hours after, provided that renal function has been re-evaluated and found to be stable, see sections 4.2 and 4.5.

Surgery

Metformin must be discontinued at the time of surgery under general, spinal or epidural anaesthesia. Therapy may be restarted no earlier than 48 hours following surgery or resumption of oral nutrition and provided that renal function has been re-evaluated and found to be stable.

Paediatric population

The diagnosis of type 2 diabetes mellitus should be confirmed before treatment with metformin is initiated.

No effect of metformin on growth and puberty has been detected during controlled clinical studies of one-year duration but no long-term data on these specific points are available. Therefore, a careful follow-up of the effect of metformin on these parameters in metformin-treated children, especially prepubescent children, is recommended.

Children aged between 10 and 12 years

Only 15 subjects aged between 10 and 12 years were included in the controlled clinical studies conducted in children and adolescents. Although efficacy and safety of metformin in these children did not differ from efficacy and safety in older children and adolescents, particular caution is recommended when prescribing to children aged between 10 and 12 years.

Other precautions

All patients should continue their diet with a regular distribution of carbohydrate intake during the day. Overweight patients should continue their energy-restricted diet.

The usual laboratory tests for diabetes monitoring should be performed regularly.

Metformin alone does not cause hypoglycaemia, but caution is advised when it is used in combination with insulin or other oral antidiabetics (e.g. sulfonylureas or meglitinides).

This medicine contains less than 1 mmol sodium (23 mg) per 500mg tablet, that is to say essentially 'sodium-free'.

Metformin may reduce vitamin B12 serum levels. The risk of low vitamin B12 levels increases with increasing metformin dose, treatment duration, and/or in patients with risk factors known to cause vitamin B12 deficiency. In case of suspicion of vitamin B12 deficiency (such as anaemia or neuropathy), vitamin B12 serum levels should be monitored. Periodic vitamin B12 monitoring could be necessary in patients with risk factors for vitamin B12 deficiency. Metformin therapy should be continued for as long as it is tolerated and not contra-indicated and appropriate corrective treatment for vitamin B12 deficiency provided in line with current clinical guidelines.

4.5 Interaction with other medicinal products and other forms of interaction

Concomitant use not recommended

Alcohol

Alcohol intoxication is associated with an increased risk of lactic acidosis, particularly in cases of fasting, malnutrition or hepatic impairment.

Iodinated contrast media

Metformin must be discontinued prior to or at the time of the imaging procedure and not restarted until at least 48 hours after, provided that renal function has been re-evaluated and found to be stable, see sections 4.2 and 4.4.

Combinations requiring precaution for use

Some medicinal products can adversely affect renal function which may increase the risk of lactic acidosis, e.g. NSAIDs, including selective cyclo-oxygenase (COX) II inhibitors, ACE inhibitors, angiotensin II receptor antagonists and diuretics, especially loop diuretics. When starting or using such products in combination with metformin, close monitoring of renal function is necessary.

Medicinal products with intrinsic hyperglycaemic activity (e.g. glucocorticoids (systemic and local routes) and sympathomimetics)

More frequent blood glucose monitoring may be required, especially at the beginning of treatment. If necessary, adjust the metformin dosage during therapy with the respective medicinal product and upon its discontinuation.

Organic cation transporters (OCT)

Metformin is a substrate of both transporters OCT1 and OCT2.

Co-administration of metformin with

• Inhibitors of OCT1 (such as verapamil) may reduce efficacy of metformin.

• Inducers of OCT1 (such as rifampicin) may increase gastrointestinal absorption and efficacy of metformin.

• Inhibitors of OCT2 (such as cimetidine, dolutegravir, ranolazine, trimethoprim, vandetanib, isavuconazole) may decrease the renal elimination of metformin and thus lead to an increase in metformin plasma concentration.

• Inhibitors of both OCT1 and OCT2 (such as crizotinib, olaparib) may alter efficacy and renal elimination of metformin.

Caution is therefore advised, especially in patients with renal impairment, when these drugs are co-administered with metformin, as metformin plasma concentration may increase. If needed, dose adjustment of metformin may be considered as OCT inhibitors/inducers may alter the efficacy of metformin.

4.6 Fertility, pregnancy and lactation

Pregnancy

Uncontrolled hyperglycaemia in the periconceptional phase and during pregnancy is associated with increased risk of congenital abnormalities, pregnancy loss, pregnancy-induced hypertension, preeclampsia, and perinatal mortality. It is important to maintain blood glucose levels as close to normal as possible throughout pregnancy, to reduce the risk of adverse hyperglycaemia-related outcomes to the mother and her child.

Metformin crosses the placenta with levels that can be as high as maternal concentrations.

A large amount of data on pregnant women (more than 1000 exposed outcomes) from a register-based cohort study and published data (meta-analyses, clinical studies, and registries) indicates no increased risk of congenital abnormalities nor feto/neonatal toxicity after exposure to metformin in the periconceptional phase and/or during pregnancy.

There is limited and inconclusive evidence on the metformin effect on the long-term weight outcome of children exposed in utero. Metformin does not appear to affect motor and social development up to 4 years of age in children exposed during pregnancy although data on long term outcomes are limited.

If clinically needed, the use of metformin can be considered during pregnancy and in the periconceptional phase as an addition or an alternative to insulin.

Breast-feeding

Metformin is excreted into human breast milk. No adverse effects were observed in breastfed newborns/infants. However, as only limited data are available, breast-feeding is not recommended during metformin treatment. A decision on whether to discontinue breast-feeding should be made, taking into account the benefit of breast-feeding and the potential risk to adverse effects on the child.

Fertility

Fertility of male or female rats was unaffected by metformin when administered at doses as high as 600 mg/kg/day, which is approximately three times the maximum recommended human daily dose based on body surface area comparisons.

4.7 Effects on ability to drive and use machines

Metformin monotherapy does not cause hypoglycaemia and therefore has no effect on the ability to drive or to use machines.

However, patients should be alerted to the risk of hypoglycaemia when metformin is used in combination with other antidiabetic agents (e.g. sulfonylureas, insulin or meglitinides).

4.8 Undesirable effects

During treatment initiation, the most common adverse reactions are nausea, vomiting, diarrhoea, abdominal pain and loss of appetite which resolve spontaneously in most cases.

To prevent them, it is recommended to take metformin in 2 or 3 daily doses and to increase the doses slowly.

The following adverse reactions may occur under treatment with metformin. Frequencies are defined as follows: very common: ≥ 1/10; common ≥ 1/100, <1/10; uncommon ≥ 1/1,000, <1/100; rare ≥ 1/10,000, <1/1,000; very rare <1/10,000.

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness.

Metabolism and nutrition disorders

Common:

• Vitamin B12 decrease/deficiency (see section 4.4).

Very rare

• Lactic acidosis (see section 4.4).

Nervous system disorders

Common

• Taste disturbance

Gastrointestinal disorders

Very common

• Gastrointestinal disorders such as nausea, vomiting, diarrhoea, abdominal pain and loss of appetite. These undesirable effects occur most frequently during initiation of therapy and resolve spontaneously in most cases. To prevent them, it is recommended that metformin be taken in 2 or 3 daily doses during or after meals. A slow increase of the dose may also improve gastrointestinal tolerability.

Hepatobiliary disorders

Very rare

• Isolated reports of liver function tests abnormalities or hepatitis resolving upon metformin discontinuation.

Skin and subcutaneous tissue disorders

Very rare

• Skin reactions such as erythema, pruritus, urticaria

Paediatric population

In published and post marketing data and in controlled clinical studies in a limited paediatric population aged 10-16 years treated during 1 year, adverse event reporting was similar in nature and severity to that reported in adults.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme, website www.mhra.gov.uk/yellowcard or search for the MHRA Yellow Card in the Google Play or Apple App Store.

4.9 Overdose

Hypoglycaemia has not been seen with metformin hydrochloride doses of up to 85 g, although lactic acidosis has occurred in such circumstances. High overdose of metformin or concomitant risks may lead to lactic acidosis. Lactic acidosis is a medical emergency and must be treated in hospital. The most effective method to remove lactate and metformin is haemodialysis.

5. Pharmacological properties
5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Blood glucose lowering drugs. Biguanides; ATC code: A10BA02

Mechanism of action

Metformin is a biguanide with antihyperglycaemic effects, lowering both basal and postprandial plasma glucose. It does not stimulate insulin secretion and therefore does not cause hypoglycaemia.

Metformin reduces basal hyperinsulinemia, and in combination with insulin, reduces insulin requirement.

Metformin exerts its anti hyperglycaemic effect via multiple mechanisms:

Metformin reduces hepatic glucose production.

Metformin facilitates peripheral glucose uptake and utilization, in part by increasing insulin action.

Metformin alters glucose turnover in the gut: Uptake from circulation is increased and absorption from food is decreased. Additional mechanisms attributed to the gut include an increase in release of glucagon-like peptide 1 (GLP-1) and a decrease of bile acid resorption. Metformin alters the gut microbiome.

Metformin can improve the lipid profile in hyperlipidemic individuals.

In clinical studies, use of metformin was associated with either a stable body weight or modest weight loss. Metformin is an adenosine monophosphate-protein-kinase (AMPK) activator and increases the transport capacity of all types of membrane glucose transporters (GLUTs)

Clinical efficacy

The prospective randomised study (UKPDS) has established the long-term benefit of intensive blood glucose control in adult patients with type 2 diabetes.

Analysis of the results for overweight patients treated with metformin after failure of diet alone showed:

• a significant reduction of the absolute risk of any diabetes-related complication in the metformin group (29.8 events/1000 patient-years) versus diet alone (43.3 events/1000 patient-years), p=0.0023, and versus the combined sulfonylurea and insulin monotherapy groups (40.1 events/1000 patient-years), p=0.0034;

• a significant reduction of the absolute risk of diabetes-related mortality: metformin 7.5 events/1000 patient-years, diet alone 12.7 events/1000 patient-years, p=0.017;

• a significant reduction of the absolute risk of overall mortality: metformin 13.5 events/1000 patient-years versus diet alone 20.6 events/1000 patient-years (p=0.011), and versus the combined sulfonylurea and insulin monotherapy groups 18.9 events/1000 patient-years (p=0.021);

• a significant reduction in the absolute risk of myocardial infarction: metformin 11 events/1000 patient-years, diet alone 18 events/1000 patient-years (p=0.01).

Benefit regarding clinical outcome has not been shown for metformin used as second-line therapy, in combination with a sulfonylurea.

In type 1 diabetes, the combination of metformin and insulin has been used in selected patients, but the clinical benefit of this combination has not been formally established.

Paediatric population

Controlled clinical studies in a limited paediatric population aged 10-16 years treated during 1 year demonstrated a similar response in glycaemic control to that seen in adults.

5.2 Pharmacokinetic properties

Absorption

After an oral dose of metformin hydrochloride tablet, maximum plasma concentration (Cmax) is reached in approximately 2.5 hours (tmax). Absolute bioavailability of a 500 mg or 850 mg metformin hydrochloride tablet is approximately 50-60% in healthy subjects. After an oral dose, the non-absorbed fraction recovered in faeces was 20-30%.

After oral administration, metformin absorption is saturable and incomplete. It is assumed that the pharmacokinetics of metformin absorption is non-linear.

At the recommended metformin doses and dosing schedules, steady state plasma concentrations are reached within 24 to 48 hours and are generally less than 1 microgram/ml. In controlled clinical trials, maximum metformin plasma levels (Cmax) did not exceed 5 microgram/ml, even at maximum doses.

Food decreases the extent and slightly delays the absorption of metformin. Following oral administration of a 850 mg tablet, a 40% lower plasma peak concentration, a 25% decrease in AUC (area under the curve) and a 35 minute prolongation of the time to peak plasma concentration were observed. The clinical relevance of these findings is unknown.

Distribution

Plasma protein binding is negligible. Metformin partitions into erythrocytes. The blood peak is lower than the plasma peak and appears at approximately the same time. The red blood cells most likely represent a secondary compartment of distribution. The mean volume of distribution (Vd) ranged between 63-276 l.

Metabolism

Metformin is excreted unchanged in the urine. No metabolites have been identified in humans.

Elimination

Renal clearance of metformin is > 400 ml/min, indicating that metformin is eliminated by glomerular filtration and tubular secretion. Following an oral dose, the apparent terminal elimination half-life is approximately 6.5 hours.

When renal function is impaired, renal clearance is decreased in proportion to that of creatinine and thus the elimination half-life is prolonged, leading to increased levels of metformin in plasma.

Characteristics in specific groups of patients

Renal impairment

The available data in subjects with moderate renal insufficiency are scarce and no reliable estimation of the systemic exposure to metformin in this subgroup as compared to subjects with normal renal function could be made. Therefore, the dose adaptation should be made upon clinical efficacy/tolerability considerations.(see section 4.2)

Paediatric population

Single dose study: After single doses of metformin hydrochloride 500 mg paediatric patients have shown similar pharmacokinetic profile to that observed in healthy adults.

Multiple dose study: Data are restricted to one study. After repeated doses of 500 mg twice daily for 7 days in paediatric patients the peak plasma concentration (Cmax) and systemic exposure (AUC0-t) were reduced by approximately 33% and 40%, respectively compared to diabetic adults who received repeated doses of 500 mg twice daily for 14 days. As the dose is individually titrated based on glycaemic control, this is of limited clinical relevance.

5.3 Preclinical safety data

Preclinical data reveal no special hazard for humans based on conventional studies on safety, pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential and reproductive toxicity.

6. Pharmaceutical particulars
6.1 List of excipients

Core

- Sodium starch glycollate

- Maize starch

- Povidone

- Colloidal anhydrous silica

- Magnesium stearate

Film-coating

- Hypromellose

- Titanium dioxide E171

- Propylene glycol

- Macrogol 6000

- Purified talc

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

3 years

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.

Store in the original packaging.

6.5 Nature and contents of container

PVC/Aluminium blister of white opaque PVC Aluminum with Hard Tempered Aluminum Foil with HSL packs in outer cardboard cartons.

Calendar pack size: 28 or 84 film coated tablets

White Securitainer (LDPE) with tamper-proof closures (HDPE) containing 500 or 1000 tablets. A desiccant is included in the pack.

6.6 Special precautions for disposal and other handling

No special precautions are required.

7. Marketing authorisation holder

Medley Pharma Limited

Unit 2A,

Olympic Way

Sefton Business Park

Liverpool

L30 1RD

United Kingdom

8. Marketing authorisation number(s)

PL 43870/0004

9. Date of first authorisation/renewal of the authorisation

31 July 2001 / 19 February 2009

10. Date of revision of the text

19/03/2024

Medley Pharma Limited
Company image
Address
Unit 2A Olympic Way, Sefton Business Park, Bootle, Merseyside, L30 1RD, UK
Telephone
01515214527
Medical Information Direct Line
01515214527
Medical Information e-mail
[email protected]
Customer Care direct line
01515214527
Stock Availability
[email protected]